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An “averaged Lagrangian” method of obtaining a dispersive system describing 
Slow variations of the wave parameters for quasi-stationary waves, is obtained 

for equations admitting the existence of wave solutions. In the first “adiabatic” 
approximation the dispersive system for the Klein-Gordon equation represents 

a quasi-linear system of the hyperbolic type and admits discontinuous solutions. 
The structure of the discontinuities for the conservative and the nonconservative 

cases is investigated and the number of free parameters in a discontinuity de- 

termined. 
Various asymptotic methods find wide application in investigating nonlinear 

waves with dispersion [I, 21. An adiabatic approximation method of obtaining 

a dispersive system of equations was proposed in 133 for the quasi-stationary 
waves, i.e. for the waves in which the change in the wave parameters is slow 

compared with the fundamental oscillations. That method is based on the pro- 
cess of averaging over the fast variable appearing in equations equivalent to 
the initial equations and written in divergent form. It was shown first for the 

conservative systems [4] and then for the nonconservative ones [5] that the dis- 

persive system can be obtained from a variational equation averaged in the 
appropriate manner. Such averaging processes representing integration over a 

part of the independent variables find use in the theory of stress and strain in 
shells and rods when the Bubnov method is used. and also in the asymptotic 

theory of nonlinear oscillations [S]. 

1, Derivrtion of a df,partive Byatom from a vrrirtlonrl equa- 
tion in the averaged form. We consider the following Euler-type equation 

--q+-qg)++q,,= 0 

for the generalized variational equation n] 

6 s L (u, ZL/, IA,) dx dt + 6W* = 0 
vo 

where 6w* is a nonholonomic variation of the functional 

(1.1) 

(1.2) 

and e is a small, positive parameter. In (1.2). the variations at the boundary v, of the 

region of integration are equated to zero. 
Let us assume that for e = 0 Eq. (1.1) has a solution in the form of a travelling sta- 

tionary wave with constant parameters Q, tit”), /do) 

164 
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u = U(O) (e, a), 6 = k(O) 5 - o@)t 

The quasi-stationary wave solutions of (1.1) are characterized by a slow change with 

respect to z and t of the parameters a, o and k. Let us assume that these solutions 

can be represented as expansions in E of the form 

n :: 2 PPQ (6, a. . . .) (1.3) 
VI=0 

6, G - Q = - 2 Rrn~P)(E2, et), 6, G Ic = 2 Emkm (EZ, ct) 
m-0 m=o 

a, = pJ p,m-lp+l) (IX. Et), a,y = ;I: Em+lP+l) (E5, Et) 
TN=‘, ?ll=O 

Applying the usual method of obtaining Urn), we substitute (1.3) into (1.1) and equate 
to zero the coefficients of like powers in C, to obtain, from the conditions of periodicity 

of the functions u(O), u(l), . . . , a dispersive partial differential system in a, 0) 

and k 15, 81. The problems of convergence in E are not considered here, the solutions 

studied being of prescribed accuracy with respect to e . The same dispersive system can 

be obtained from the averaged variational equation using the variations 66 and 6a. 

The averaged Lsgrangian z is introduced in the form 

2X (1.4) 

E (fh ox, a. a,. a,, Hi,. /I,, II) --: & 5 L (UC”‘, 6,11’80’ + a&p + II,c’g’, . . .) d6 

where ,@’ and uf’ are derivatives with respect to 4 and a appearing in the explicit 

form, and H incorporates the remaining terms which change slowly and are not subject 
to further variation. The averaged nonholonomic variation 6W* is given in the form 

6W” = \’ [(I&6 + Q~,Jhz] dz dt (1.5) 
VO 

? n 

Q(e) = -&\" C+uj(u, ~1, IL.,. t-) J$"df), 
I 

Q(u) = +$Q(u, (u, ut, u,. q@'d6 
Ii 

Here Q(e) and Qcn) are the averaged generalized forces and the function u is taken 
in the form of (1.3). We note that for the conservative systems when 6W* = 0, the 

stationary solution U(O) is sufficient to define the dispersive system in any degree of 

approximation with respect to e . 
The next approximation for the dispersive system, following the stationary one, may 

be obtained by equating to zero a, and a, in (1.4). i.e. taking the averaged Lagrangian 
in the form L _- E(O) (e,, 6,, a) 

and setting u = u(o) in (1.5). The resulting quasi-linear system describes the adiaba- 
tic approximation due to Whitham [3, 91. 

In a number of important cases this quasi-linear system is hyperbolic and admits the 
existence of discontinuous solutions. These discontinuities, which were brought into con- 
sideration by Whitham [3] are, unlike the shock waves in the continuous media, not con- 
nected with the irreversible transformations of energy and provide schemata for the do- 
mains of rapid variation of the wave parameters in the first approximation. The dispers- 
ive system in this approximation is not valid for these narrow zones, but can be used to 
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record the conditions at the discontinuities. These conditions can be obtained from both 

the dispersive system written in the divergent form and the averaged variational equa- 

tion [IO), and they have the form 

ax(o) ” 
z;(O) _ h_ I 

dk J 

(1.6) 

where Y is the rate of propagation of the discontinuity and (41 denotes the difference 
in the values of the function 9 ahead and behind of the discontinuity. We note that the 

conditions (1.6) refer to the first adiabatic approximation. 
In a higher order approximation the dispersive system makes possible the study of the 

structure and evolutionarity of these discontinuities. 

2, Concervrtive ryttem8, As an example, we consider the Klein-Gordon 

equation 
11 f f - ‘1.Y.V I,” (Ii) (I (2.4) 

for which in the variational equation (1.2) we have 

and V’ (u) is a nonlinear function. The stationary wave U(O) (0, a) is determined by 
the solution of the following ordinary differential equation : 

the first integral of which has the form 

‘2 
I ‘(O)’ _i_ V (f-j(O)) ~ ~ 
/e 

and can be obtained bv inverting the integral 
r:(O) 

+) = + )/&+Of. _ /?&Of2 
- (24 

Here a, and as denote two consecutive roots of the equation 

s (y) -z 02 - 2v (y) -; 0 

such that when a, < 9 < aa we have s (y) > 0 and the moduluaoC s (y) is ofthe order 

of 1 y - ai 1” near ai when cli < 2. It can be seen from (2,2) that U(a) is a func- 

tion even in 6. In the following we shall consider the branch corresponding to *>o. 

Let us write the averaged Lagrangian (1.4) for Eq. (2.1) 

(the functions ‘p,, ‘C;L and cpsare determined as respective integrals of @‘s, fl”’ and 
V (u(O)) Then the dispersive system is found to be eomposod of the following equations 
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(2.3) 

a II - a,, - 
n,? -a sa ‘pla oa - ka ‘PI,, 

2 
_____++L() 

‘pl 2 (2.4) 

w, + kt = 0 (2.5) 

Equations (2.3) and (2.4) can be written in the form of the conservation laws following 
from the Noether theorem [ll] on invariance of the Lagrangian z under the group of 
translations in t and .‘c 

“;;I j a;;2 - 0, _!g+2$0 (2.6) 

where 

In the adiabatic approximation the second order ferms in & in the dispersive system 

should be neglected. Then (2.5) yields the following dispersive relation connecting ti. , 
k and II 

(,)A _ Ii’ ..= 
203, 

-G 0 (a) 
cp 

(2.7) 

211 

from which we can find o (k, Q) whereupon the complete dispersive system becomes 

(2.8) 

ai; J&IO 2 :- @(n)] = 0 

This dispersive system is a hyperbolic, quasi-linear, reducible system and admits two 

families of characteristics 133. It leads to multivalued solutions, and its discontinuous 

solutions with conditions (1.6) at the discontinuity were considered in [3]. The neces- 

sary condition for the discontinuity in the system (2.8) to be evolutionary [la] is the 
presence of three characteristics at it. This condition forms a system of three inequali- 
ties, their corollaries were considered by Whitham in [3]. We note that in the adiabatic 

approximation the conditions at the discontinuity leave three parameters unrestricted. 
In the linear case V = ~2 / 2 Eq. (2.1) becomes the telegraph equation, and the dis- 

persive relation (2.7) is independent of the amplitude and 0 (a) = 1. In this case the 
characteristic directions coincide and are equal to the group velocity do / dk, therefore 

the number of characteristics at the discontinuity is not greater than two and the discon- 
tinuity is not evolutionary. This result is obvious, by virtue of the principle of superpo- 
sition of solutions. 

To clarify the structure and the conditions of evolutionarity of the discontinuity, we 
consider the complete dispersive system (2.3) - (2. 5). We seek its solutions in the form 
of a function of the variable E ==-5 - vt. From (2.3), (2. 5) and (2.6) we obtain a sys- 
tem of ordinary differential equations the first integrals of which have the form 

- k#-J, + U (1 - U”) ($)” ‘pl - ok (1 - v”) ‘p2 = U (1 - V”) C3 
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w - vk = c2, - uot+~~ + X-T:! = ct (2.!9 

Eliminating k and o and introducing the total energy E 1~ a2 1 2, we obtain an equa- 

tion for E = E (E), which can be solved in quadratures 

2E 
‘Pl’pI (1 - L:?)s - ‘r22c22 + 2 (1 - v’) (P&3 + (2.10) 

‘p2 cc3 (1 - LJ*)* - ClC2 (v -I- f)] - C:\ z F(E) 

For the linear equations (v’ = U) the functions ‘(‘i ate easily computed {u(“) = 

a cos 6) 
‘p1 = ‘1%. ‘p* z_ E , ‘f3 = l/*E 

Then P (E) in (2.10) is a quadratic trinomial 

I:(E) = +-+ {E” [- c2* + (1 - r:“)] -;- I: [c;, (1 - v?)* - cIc2 \ - cl* 

Let us consider F (E) on the ( F, E )-plane (curve 1 in Fig. 1). A bounded so111tim 

is possible if the following two conditions hold : 

f?* > (I - 1.‘)) 

- <c,“(l - 29) - /tclc,c3(u2 - 2) 

The solution describes sinusoidal modulation of the arnplltude. as well as o 

This result agrees with the conclusion thar no discontinuiries are possible in 

equation written for the dispersive system in rile adiabatic approximation. 

Let us now consider the nonlinear case and show the possible forms of the 

F (1:‘). defined by Eq. (&lo), which lead to hounded solutions of (2.10). 

1). Equation 
P ( /:‘) 0 

and k. 
the linear 

function 

(2.11) 

admits two simple roots I;‘, ( I:, sucil t;laf k’ (k’) > IJ for I<, < L< Ez. This case 

is analogous to one already c.onsidered for tile linear equation and represents the modu- 

lations of U, 0) and Ii. 

2). Iri Eq. (2.11) c‘, IS a simple root antl / c’? IS a double root (curve 2 in Fig. 1). 

Then the solution _k’ /5 (5) has the forrlr of a single, isolated wave [l], the wave 

arnpl::~4c IS eqllal fn 1:‘~ - L,, and the value at infinity is k2(isolated rarefaction 

wave). 1:) I!:I< cnsc toe co:itl:tions (2. 9) are supplemented with an additional condition 

is an I/-tuple root (n SC .5)., 

Fig. 1 tional conditions are p’ (j:‘~) = . . . 5 
F”) (/:‘,) - 0 and /< tends to t’, with 

F;- + oc in an algebraic manner. Since we impose /I additional restrictions, the 

number of rile unrestricted parameters is equal to 5 - I(. 

3). Let In Eq, (2.11) /-,:‘, be a double root and /<, a simple root (curve ,y III Fig.1). 

Then a hydraulic shock type solution is possible. i.e. a discontinuity betwee]] I:‘, and 
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Es. However, the integral curve E = Es is singular, therefore the hydraulic shock 

will be stable provided that E = Ez is also a double root. In this case we have two 
unconstrained parameters (see below). 

4). If Et and Ez are both double roots (curve 4 in Fig. 1) and F (E) > 0 for 

E, < E < Ez, i.e. if the conditions 

F (EJ = 0, F’ (Ei) = 0 (i = 1,2) 

hold, then the solution obtained has the form ofa smoothly varying amplitude between E, 
and E,and the derivatives of E, k and Q tend to zero as g -+ + 00 . The first inte- 
grals (2.9) form three conditions at the discontinuities and Eq, (2.4) of the dispersive 

system provides another two conditions 

~3’ (Ei) uis - kis = - 
9s’ (&j_) 

(r = 1, 2) (2.12) 

It can be shown that the requirement that F’ (E,) = 0 is equivalent to (2.12). 

Thus we have five conditions for seven parameters, leaving two parameters unconstrained. 

We note that the necessary conditions for the existence of a discontinuity in the adiaba- 

tic approximation will not be sufficient when discontinuous type solutions are considered 
in a complete dispersive system. 

3. Nonconrervrtivo ryrtamr. Let us consider the linear Klein-Gordon equa- 
tron whose right-hand side is not zero, setting 

L=:-$+ Y+$, 6w* = djQ(u, ult u,, +uda:dt 

In this case the dispersive system has the form 

~~~~+~~+~~a)_O 

a,, - ar.r + (k2 - co2 -!- 1) a -i- Z&Q(,) = 0 (3.1) 
ox+ kt = 0 

where f&e, and Qc,, are determined in accordance with (1.5). 

FoIlowing (2.4) we write the equivalent system in the form of the laws of conservation 

where Tij is given by (2.6) and z has the form 

At first we shall limit ourselves to the terms of the order not higher than the first in E . 

Then (3.1) yields the following dispersive relation equivalent to (2.5): 

o2 = I+ k2 + 8 + Oft?) (a, k) (3.3) 
Let us write the first equation of (3.1) in the same approximation in the form 

E,+c(k)E,+Ec’(k)k,--QQr8)-0, c(k)= ,$& (3.4) 

We consider a particular solution of the system (3.2) - (3.4) corresponding to the self- 
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oscillatory mode, for a stationary monochromatic wave 

0 = 00 = con&, k = k, = const, E 7 E, == con&, 

assuming that the condition @a) = 0 must hold, i.e. that a frequency-amplitude 

dependence exists for the self-oscillatory mode. Let us pose the problem of stability of 

such a solution. A system written in variations with the accuracy of up to and including 

terms of order of e , has the form 

Then solution of the second equation is given by 

Sk = $ (x - c(k,) i) 

where 9 is an arbitrary function. If the solution 6E is sought in the form of a function 
of 5 - c (k,-,)t, then it has the form 

i.e. the stability of the self-oscillatory mode is determined by the sign of 3q / dE. 
For stable self-oscillatory modes we consider discontinuous solutions, regarding a dis- 

continuity in the sense used above. To clarify the problem of stability of a discontinu- 

ity, one must consider the approximation following the adiabatic one, and for thiq it is 

sufficient to take the dispersive system in the form 

(3.5) 

2:: 

Qw = -& \ f ( a Cos 6, toa sin 6, - /ia sin 19) COS 6d+ 

Qw, = &'( f( a cos 6 -j- F.JJ(~), cm sin 6 +. al cos 6 - EoU~‘, 

0 
- ka sin 6 + a, cos 6 -f- FkUc)) sin fl&? 

where in Qca) we take into account the terms of the order of E” and in Qte, the terms 
of the order of &O and e1 , and assume that within the limits of accuracy chosen 0~~) = 

vl,) (u, k). When computing 1/(l), we can express it in the terms of a, 61 and k 
without resorting to functions appearing in the asymptotic representations (1.3). For 

this reason, in the general case, we have in the second approximation 

and Q(e) can, within the limits of accuracy considered, be written in the form 

Q(a) = Qgj (al to, k) _t a,@$ (a, 0, k) + u,Q(a’, (at 0. k, 

Clearly, the necessary condition for existence of discontinuous solutions is the following 
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equality: Q(o) 
(a, = 0 (3.6) 

which mmf hold for the admissible values of 4 0 and k ahead and behind fne dis- 

continuity. 
Solving (3.5) and (3.6) jointly, we obtain an expression for Qta, depending on U only. 

As a result, the dispersive relation becomes 

o2 = k2 -$- 0 (a), CD (a) = 1 - 2a-'eQ~,) (4 (3.7) 

The above equation represents a particular case of the dispersive relation for the non- 

linear Klein-Gordon equation. If the dispersive system is written out in the form of the 

laws of conservation (3.2). and (3.6) with (3.7) are taken into account, then its right- 

hand sides have the form 

EQ(,) at - ~Q~c,p = ~F’(a)a, - eo (a) x 

Ia,Q$j(wo (a), k (a)) -I- axQ$', (a, co (a), k (@)I 

EQ~,) a, -i- EQ~,,) k = EFI (a) ux -t Ek (a) x 

btQ$\ (a,@ (a), k (4) + a,Q# ( a, OJ (4, k (a))1 

where F (a) is the primitive of Qcn) (a). Introducing the primitive functions for the 
remaining terms 0’ (a), we can write the dispersive system in the following divergent 

form a J (d + ky aa 
at\ 4 

+ f + # (a) - ~(1)‘~ (u)} + & {F - Fao12 (U) = 0 

&2’ (@} + _& {(a2~.2)n2 - f - eF (a) - F.@~’ (a)) = 0 

From this the obvious conditions at the discontinuity follow, they can be regarded as a 
generalization of conditions (1.6). We note that the present case differs from that of 

conservative systems ; here only a single parameter remains unrestricted (owing 

to the necessity of satisfying the two supplementary conditions (3.6) ahead and behind 

of the discontinuity). 

In connection with the argument given in Sect.2 we find it important to take into 

consideration the next (third) approximation, as this will unable us to reveal the struc- 

ture of the discontinuity. We shall seek a solution of the system (3.1) expressed as a 
function of the variable E = 5 - ut, where u is the rate of propagation of the dis- 

continuity and is constant, remembering that QCJ should include terms of the order of 
e: and Q(e) terms of the order of &2 inclusive 

2n 

1 
Qw = 2;7 c f (a Co.7 6 + fxU(U, 6x2 sin Q + a, cos 6 - EO@, - Icu sir1 6 + 

; 

a, cos 0 + ekU’,“) cos 6d6 
2n 

Qw = + s 
f (U COS 6 $- EU(‘) f c~U(~), ou sin 6 + . . . - EGO@), - 

0 

kusin6+... + e2kiJ’,2’) sin 6d6 

We note that for the linear case the functions u(l) and UP) can be expressed in terms 

of a, o and k, so that 
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The following conditions must be fulfilled in the course of solution : 
1) for 5 --t + 00 the values of a, k and w ahead of the discontinuity tend tc 

constants at, k, and ot; 

2) for g -+ - 00 the values of a, k and CO behind of the discontinuity tend to 
constants ~2, k2 and 02; 

3) for E -+ i 00 , the derivatives of any order in 2 rend to zero. 
if such solutions exist, they have the discontinuity character. Then the first two equa- 

tions of (3.1) yield the following four conditions (i -= i, 2) 

(I(o) (Ui, ki, CI)~ 1 O, s . . + O) 1 (J (3.t3) 
ai (/Q - Wi’L + 1) -t Z&Q{,> ffIi* h-i, (Iii* U, U) 7 0 

Finally, t’ne last equation of (3.1) gives the first integral 

(J) - ri/i --: (‘2 (A) 

From (3.1) and (3.2) we obtain the following dispersive system in E and k 

--& (l&f - uirg [E(uk$- cz)] - cQc8) ,(I 
i 
a,lc,uk + c~,-- v$-, %, . . .) -0 

((uk + c,) kh’] -& -$- [z@ - 1) -&(%)“I + (3.10) 

Substituting dE / & = p, we reduce this system to its normal form 

dfridj = k’ =-I fl (k, E, p), P’ 7 fz (k, E, PI? 6’ = p 

The latter system is autonomous. Solving the first two equqtions for E, we can obtain 

a solution for the following initial values : 
fs -.i k, p LIZ pt z.z It wnen E :-= E, 

Thus we obtain an equation for dE i dE 

dE 
- .= P (E, El. kl, e) a: 

which is a function of the initial values. The constants E, and k, can be overdefined 

using the first integrals of the system of Eqs. (3.8) and (3.9) 
e 

(1 - 112) kE - cczE -. I? \ Qcat (e, E, vk + cz, k, - t’p, p, . . ., fi) = ‘Cl. 
e, P 

B 

Let us set 

cl -= (1 - v”) k,E, - vc,E,, cz’= cl?, + (r* - 1) (c2 f- vk,) E,k, 
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This enables us to express k, and l$ by cl, c, and es. Moreover, the requirement that 

Pl - dE I d&=+, = 0 is fulfilled in this case automatically. 

Let us now set E 

c 
dE 

I (E) = . Qw --jr 
El 

find k from (3.9) and insert it into (3.10). After some manipulations we obtain 

Y(VZ-1) (Cl + WE) (UC1 + C2E) 

4 
F(E)=caE-vvEa+ 1-79 - 

E E E 
VEE? 

PeEv 
2aEc,e 

QcE) dE .L - 
c 

LdE-m 
v2 - 1 , E2 

El El El 

The necessary conditions for the initial dispersive system to have discontinuity type 

solutions, are 
F (Ei) = 0, F’ (Ei) = 0 (i =1,2) 

We have shown before that J’ (E,) =- 0. If the following relations emerging from 

(3.9) and (3.10) hold 
(1 - u2)k&, - vc,E, - EI (E,) = c1 

E 
vE, + (v” - 1) (~2 + vk,) E,k, $2~ s ‘Q,E$E + &,I (E,) + 2ve [ 

E’ Q(,,kdE p = cs 
E, EI 

then the last of them is equivalent to F (E,) -= 0. It can be shown that 

’ (“24- ‘) (F - eF’) z Eau (1 $ ,+2 - 02 A 2BQcE,} 

Assuming E = Ei we find, on the basis of(3.6) and the equality F (EJ = 0 that 
in this case F’ (EJ = 0. 

Thus we have imposed seven following conditions on the seven parameters l’, oi, ki 
and ai Q(a) (ICi, Wi, Ei, 0, * a . 7 0) = 0 

ki2 - 0i2 + 1 f 2&v(~) (ki, Oi 7 L;i, 0, 0) z 0 

If this system admits solutions, then a discontinuity can be realized with the above 
values. Consequently the dispersive system admits a discrete set of discontinuities. 

We emphasize that a nonconservative initial system also admits the discontinuity-type 
solutions, but the discontinuity parameters must then be specified more accurately. 
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We consider a solid body with a simply-connected cavity containing a liquid. 

In the case when the potential energy is positive definite with respect to a part 

of the generalized coordinates, we give sufficient conditions for the asymptotic 
stability of the equilibrium position relative to a part of the coordinates, to the 
generalized velocities, and to the kinetic energy of the fluid. It is shown that 
the asymptotic stability is uniform with respect to initial excitations from any 

compact set in some neighborhood of the equilibrium position. 

1. We consider a system of differential equations of perturbed motion 

x’ = x (t, It) (X (t, 0) EE 0) (1.1) 

where x = (yr, . . ., y,, 21, . * . 7 zp) is a real n-vector and, n = m + p! 

m > 0, p $3 U. We assume that 


